On bipartite graphs of defect 2
نویسندگان
چکیده
It is known that the Moore bipartite bound provides an upper bound on the order of a connected bipartite graph. In this paper we deal with bipartite graphs of maximum degree ∆ ≥ 2, diameter D ≥ 2 and defect 2 (having 2 vertices less than the Moore bipartite bound). We call such graphs bipartite (∆, D,−2)-graphs. We find that the eigenvalues other than ±∆ of such graphs are the roots of the polynomials HD−1(x)± 1, where HD−1(x) is the Dickson polynomial of the second kind with parameter ∆− 1 and degree D − 1. For any diameter, we prove that the irreducibility over the field Q of rational numbers of the polynomial HD−1(x)−1 provides a sufficient condition for the non-existence of bipartite (∆, D,−2)-graphs for ∆ ≥ 3 and D ≥ 4. Then, by checking the irreducibility of these polynomials, we prove the non-existence of bipartite (∆, D,−2)-graphs for all ∆ ≥ 3 and D ∈ {4, 6, 8}. For odd diameters, we develop an approach that allows us to consider only one partite set of the graph in order to study the non-existence of the graph. Based on this, we prove the non-existence of bipartite (∆, 5,−2)-graphs for all ∆ ≥ 3. Finally, we conjecture that there are no bipartite (∆, D,−2)-graphs for ∆ ≥ 3 and D ≥ 4.
منابع مشابه
0 On bipartite graphs of defect at most 4 Ramiro
We consider the bipartite version of the degree/diameter problem, namely, given natural numbers ∆ ≥ 2 and D ≥ 2, find the maximum number Nb(∆,D) of vertices in a bipartite graph of maximum degree ∆ and diameter D. In this context, the Moore bipartite bound Mb(∆,D) represents an upper bound for Nb(∆,D). Bipartite graphs of maximum degree ∆, diameter D and order Mb(∆,D), called Moore bipartite gr...
متن کاملOn bipartite graphs of diameter 3 and defect 2
We consider bipartite graphs of degree ∆ ≥ 2, diameter D = 3, and defect 2 (having 2 vertices less than the bipartite Moore bound). Such graphs are called bipartite (∆, 3,−2)-graphs. We prove the uniqueness of the known bipartite (3, 3,−2)-graph and bipartite (4, 3,−2)graph. We also prove several necessary conditions for the existence of bipartite (∆, 3,−2)graphs. The most general of these cond...
متن کاملNon-existence of bipartite graphs of diameter at least 4 and defect 2
The Moore bipartite bound represents an upper bound on the order of a bipartite graph of maximum degree ∆ and diameterD. Bipartite graphs of maximum degree ∆, diameterD and order equal to the Moore bipartite bound are called Moore bipartite graphs. Such bipartite graphs exist only if D = 2, 3, 4 and 6, and for D = 3, 4, 6, they have been constructed only for those values of ∆ such that ∆− 1 is ...
متن کاملThe p-median and p-center Problems on Bipartite Graphs
Let $G$ be a bipartite graph. In this paper we consider the two kind of location problems namely $p$-center and $p$-median problems on bipartite graphs. The $p$-center and $p$-median problems asks to find a subset of vertices of cardinality $p$, so that respectively the maximum and sum of the distances from this set to all other vertices in $G$ is minimized. For each case we present some proper...
متن کاملMETA-HEURISTIC ALGORITHMS FOR MINIMIZING THE NUMBER OF CROSSING OF COMPLETE GRAPHS AND COMPLETE BIPARTITE GRAPHS
The minimum crossing number problem is among the oldest and most fundamental problems arising in the area of automatic graph drawing. In this paper, eight population-based meta-heuristic algorithms are utilized to tackle the minimum crossing number problem for two special types of graphs, namely complete graphs and complete bipartite graphs. A 2-page book drawing representation is employed for ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Eur. J. Comb.
دوره 30 شماره
صفحات -
تاریخ انتشار 2009